Oxford Cambridge and RSA

GCSE

Mathematics (9-1)

Unit J560/04: Paper 4 (Higher Tier)
General Certificate of Secondary Education

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
A	Omission sign

Subject-Specific Marking Instructions

1. M marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage. SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their $\left.5^{2}+7^{2}\right)$. Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg
- $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1	(a)	3	2	B1 for 36 or 9	ignore \pm
	(b)	4×10^{-5} or [0]. 00004	2	B1 for 2.5×10^{4} or 25000	Condone $\frac{1}{25000}$ for 2 marks
2		8.258 .35	2	B1 for either one correct or for both correct but reversed	
3	(a)	$\begin{aligned} & 2 \times 2 \times 2 \times 3 \times 3 \times 7 \text { or } 2^{3} \times 3^{2} \times 7 \\ & \text { final answer } \end{aligned}$	3	B2 for 2,2,2,3,3,7 or $2^{3}, 3^{2}, 7$ or for a correct expression one stage short of the correct answer e.g. $2^{3} \times 9 \times 7$ or B1 for two of 2,3,7 identified	allow "." for " x " and condone $2^{3} 3^{2}$ 7 for 3 marks for B1 and B2 allow factor tables and trees
	(b)	2520	2	M1 for factors of $180=2,2,3,3,5$ oe or seen as factor tables and trees If 0 scored then SC1 for 2520n e.g. 90720	accept any correct method
4		128	2	$\begin{aligned} & \text { M1 for } 12(4)+\frac{1}{2}(10)(4)^{2} \\ & \text { or } \\ & \text { B1 for } 48 \text { or } 80 \end{aligned}$	
5		34.5	3	$\begin{aligned} & \hline \text { M2 for } 38.64 \div 1.12 \text { oe } \\ & \text { or } \\ & \text { B1 for } 1.12 \text { or } 112 \end{aligned}$	

Question		Answer	Marks	Part marks and guidance	
7	(a)	135	2	B1 for angle 45	e.g. 45 marked at $A C B$ or $A B C$, $180-45,90+45$
	(b)	209 to 209.1	4	M2 for $\tan ^{-1}(45 \div 25)$ or $\tan ^{-1}(25 \div 45)$ soi by $61,60.94$ to 60.95 or 29[.1] , 29.05... or M1 for $\tan [=] 45 \div 25$ or $\tan [=] 25 \div 45$ AND M1 for 270 - their angleABD or $180+$ their angleADB	Accept longer methods but they must get to the equivalent point to gain credit e.g. if they find the hypotenuse, they score M0 until they start to use sin or cos. Can be implied by their answer
8	(a)	4 points accurately plotted	2	B1 for 2 or 3 points accurately plotted	condone missing or incorrect lines

Question		Answer	Marks	Part marks and guidance	
9	(a)	$\begin{aligned} & 24 \\ & 31 \end{aligned}$	5	M1 for $3 X+2 Y=134$ oe M1 for $2 X+5 Y=203$ oe M1 for multiplying both equations by scalars to equate coefficients of one variable (allow one arithmetic error) M1 for correct method to eliminate one variable (allow one arithmetic error) if M4 not scored award B3 for one correct answer	allow any correct method e.g. substitution M1 for rearranging one equation to make X or Y the subject, $X=\frac{134-2 Y}{3}$ M1 for substitution of their expression in the other equation
	(b)	Any correct comment relating to distance	1		See appendix
10	(a)	4200	1		
	(b)	$\begin{aligned} & 3948=4200 r \text { oe } \\ & 3948 \div 4200=0.94 \end{aligned}$	B1 B1		Can be implied by e.g. second statement
	(c)	[0].4[0] $\times 4200$ or 1680 $4200 \times([0] .94)^{15}$ or $1660[. .$. 1660[....] and1680 oe	M1 M1 A1	accept any correct method e.g. M1 for 4200×0.94^{15} or 1660 [. ...] M1 for 1660[. ...] 4200 [$\times 100$] implied by . $395[$...] or 39.5 to 39.6 A1 for 60.4 to $60.5[$...] or 39.5 to 39.6 with a suitable comment	Alternatives: M2 for $0.94^{15}=.395[\ldots]$ A1 for 60.4 to 60.5[...]

Question			Answer	Marks	Part marks and guidance	
11	(a)		Correct translation	2	B1 for a correct horizontal translation or a correct vertical translation	Condone freehand, points must be joined for 2 marks, B1 if all correct and not joined
	(b)	(i)	rotation (0,0) oe 90° [anticlockwise] oe	1	if $\mathbf{0}$ scored M1 for the triangle/dots on the grid correctly rotated twice for centre allow origin and O and for angle allow e.g. $-270^{\circ}, 270^{\circ}$ clockwise	Double transformation can only score M1
		(ii)	Rotation $(0,0)$ oe 180°	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	if $\mathbf{0}$ scored $\mathbf{M 1}$ for the triangle /dots on the grid correctly reflected twice or SC2 for "rotation (0,0) oe, $90^{\circ}{ }^{\circ}$ written twice for centre allow origin and O	Allow enlargement (0,0) [sf=]-1 for 3 marks Other double transformations can only score M1
12			55 soi by 25 80 - their55 soi 25 [0].3[0] $\times 80$ soi 24 25 and 24 so yes oe	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	condone if written on graph or their $25 \div 80$ or $31[\%$] or 31.2 to 31.3[\%] $31[\%]$ or 31.2 to $31.3[\%][$ and 30] so yes A1dep on both M1s and A1FT follow through from their 55	accept any correct method e.g B1 for 55 M2 for [0]. 7×80 soi 56 or M1 for [0]. 3×80 soi 24 A1 for 55 and 56 so yes

Question		Answer	Marks	Part marks and guidance	
13	(a)	$[0] .4,[0] .3$ and $[0] .8$ oe in the correct places	1		Accept equivalent fractions or percentages with \% sign in each part and FT their tree diagram only if (a) scores 0 marks
	(b)	[0]. 4 or $\frac{2}{5}$ oe	1	FT their tree diagram	accept 40% : condone $\frac{4}{1}$, penalise wrong form once eg 4 : 10, 4 in 10
	(c)	[0].7 or $\frac{7}{10}$ oe	1		accept 70\%
	(d)	[0].08 or $\frac{2}{25}$ oe	2	FT their tree diagram for 2 marks M1 for their $[0] .4 \times[0] .2$	accept 8\% and working may be in the tree
	(e)	[0]. 82 or $\frac{41}{50} \mathrm{ee}$	3	FT their tree diagram for 3 marks M2 for $1-[0] .6 \times$ their $[0] .3$ or $[0] .6 \times[0] .7+$ their $[0] .4 \times$ their $[0] .8$ + their [0]. $4 \times[0] .2$ oe soi or M1 for [0]. $6 \times$ their [0]. 3 or two of $[0] .6 \times[0] .7$, their $[0] .4 \times$ their $[0] .8$, their $[0] .4 \times[0] .2$ oe soi	accept any correct method and working may be in tree implied by $1-[0] .18$ implied by $[0] .42+[0] .32+[0] .08$ implied by [0]. 18 implied by two of [0].42, [0].32, [0]. 08

Question		Answer	Marks	Part marks and guidance	
15	(a)	14-15	1		
	(b)	30 from graph Starting with their 30 (using mph) These method marks could be awarded in any order $\begin{aligned} & \times 60^{2} \text { soi } \\ & \div 1000 \text { soi } \\ & \div 1.6 \text { soi } \end{aligned}$ 67.5 so yes	B1 M1 M1 M1 A1	Starting with 60 (using m / s) These method marks could be awarded in any order $\begin{aligned} & \text { M1 } \times 1.6 \text { soi by } 96 \\ & \text { M1 } \times 1000 \text { soi } \\ & \mathbf{M 1} \div 60^{2} \text { soi } \end{aligned}$ B1 for 30 from graph A1 for 26.6 to 26.7 and 30 so yes	accept any correct method e.g. (using km/hr) M1 for 60×1.6 soi by 96 B1 for 30 from graph Starting with their 30 These method marks could be awarded in any order $\mathbf{M 1} \times 60^{2}$ soi M1 $\div 1000$ soi A1 for 96 and 108 so yes
	(c)	Attempt at a tangent drawn at $t=7$ 4.0 to 4.5 oe	B1 B2	M1 for an attempt at speed \div time, could be on the graph e.g. $30 \div 10$ or their $(a) \div 7$ soi $2.07 \ldots$ or 2.14..	Accept answer as a fraction and tolerance on reading from graph \pm $1 / 2$ small square Gradient for M1 could be from a chord. Ignore any negative sign
	(d)	$v=k t^{2}$ where $0.25 \leq k \leq 0.33$	3	SC2 for $v \propto k t^{2}$ where $0.25 \leq k \leq 0.33$ or B1 for $v=k t^{2}$ AND M1 for $30=k(10)^{2}$ or FT their reading from the graph for values of v and t or B1 for $0.25 \leq k \leq 0.33$	Condone use of other letters especially s for speed Can be implied by eg $30=k(10)^{2}$ k could be a fraction e.g. $\frac{15}{49}$
	(e)	any correct comment e.g. graph only valid/information only available up to 10 secs or car will eventually reach max. speed	1		See appendix

Question		Answer	Marks	Part marks and guidance	
16		$(x-5)^{2}$ final answer -9 final answer	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	FT their $(x-5)^{2}$ final answer	
17		circle centre $(0,0)$ oe and radius 3	1	condone circular accept origin or O for $(0,0)$	
18	(a)	$\begin{aligned} & (2 x-3)(x+4) \text { oe } \\ & 1.5 \text { oe and }-4 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for any two factors that give two correct terms when expanded Correct or FT their two factors	If they use another method then award B1 for both answers correct.
	(b)	$\begin{aligned} & {[0] .72} \\ & -1.39 \end{aligned}$	3	M2 for one correct answer or $\frac{-2 \pm \sqrt{2^{2}-4 \times 3 \times-3}}{2 \times 3}$ or better or M1 for this formula with at most two errors if $\mathbf{0}$ scored allow SC1 for answers [0].720 ... or [0]. 721 and $-1.38 \ldots .$.	for completing the square M1 for $\left(x+\frac{1}{3}\right)^{2}-\frac{10}{9}$ M1 for $\sqrt{\frac{10}{9}}-\frac{1}{3}$
19	(a)	$\frac{n^{2}}{n+1}$	2	B1 for n^{2} or $n+1$	
	(b)	$\begin{array}{ll} \hline a=] & 3 \\ {[b=]} & 1 \\ {[c=]} & -2 \end{array}$	4	```B2 for [a =] 3 or M1 for second differences = 6 and M1 for revised differences of -1 0 1 2 or B1 for b or c correct```	accept any correct method see notes

| Question | | Answer | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0}$ | | evidence of finding the area under the
 graph | M1 | M1 for evidence of any correct method
 to find the area under the graph e.g.
 counting squares (numbers or dots in
 squares) or use of triangles,
 trapeziums or rectangles |

APPENDIX

Exemplar responses for Q9(b)

Response	Mark
He does no other driving other than routes X and Y in the week	$\mathbf{1}$
There are no diversions or detours	$\mathbf{1}$
He sets off from the same place each time	$\mathbf{1}$
That he only drives these two routes	$\mathbf{1}$
They are the same 2 routes and never change	$\mathbf{1}$
He could of gone to other routes as well as X \& Y routes. He didn't drive anywhere else.	$\mathbf{1}$
That Dan isn't driving anywhere else during the week	$\mathbf{1}$
The routes are correctly measured	$\mathbf{1}$
He takes exactly the same route each time.	$\mathbf{1}$
He hasn't taken any breaks	$\mathbf{0}$
There are no stops	$\mathbf{0}$
There is no traffic jams	$\mathbf{0}$
He does not cancel his drive	$\mathbf{0}$
That no stops in petro stations were made	$\mathbf{0}$
Y has a longer route than X	$\mathbf{0}$
Dan prefers to drive route Y as he has driven it more than route X	$\mathbf{0}$
He didn't drive route X or Y there and back	$\mathbf{0}$
That there is no traffic or road works	$\mathbf{0}$

Exemplar responses for Q15(e)

Response	Mark
graph only valid/information only available up to 10 secs	$\mathbf{1}$
car will eventually reach max. speed	$\mathbf{1}$
It could stay at a constant speed	$\mathbf{1 B O D}$
It gains enough acceleration its speed becomes constant	$\mathbf{0}$
He drove the whole route	$\mathbf{0}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

